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Abstract—Huge salt formations, trapping large untapped oil and gas reservoirs, lie in the deepwater region of the Gulf of Mexico.

Drilling in this region is high-risk and drilling failures have led to well abandonments, with each costing tens of millions of dollars. Salt

tectonics plays a central role in these failures. To explore the geomechanical interactions between salt and the surrounding sand and

shale formations, scientists have simulated the stresses in and around salt diapirs in the Gulf of Mexico using nonlinear finite element

geomechanical modeling. In this paper, we describe novel techniques developed to visualize the simulated subsurface stress field. We

present an adaptation of the Mohr diagram, a traditional paper-and-pencil graphical method long used by the material mechanics

community for estimating coordinate transformations for stress tensors, as a new tensor glyph for dynamically exploring tensor

variables within three-dimensional finite element models. This interactive glyph can be used as either a probe or a filter through

brushing and linking.

Index Terms—Geomechanical modeling, Mohr diagrams, multiple coordinated views, tensor field visualization, tensor glyph.
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1 INTRODUCTION

AS the United States has sought to increase domestic
energy production, oil and gas exploration has

expanded into the deepwater portions of the Gulf of Mexico
(GoM)where tens of billions of barrels of undiscovered oil are
thought to lie near or beneath deeply buried salt formations.
Prior to increases in computational power and the develop-
ment of novel seismic processing techniques in the late 1980s
and early 1990s, exploration in this region was impractical.
But, with the recent dramatic improvements in subsalt
seismic resolution, the deepwater GoM has become a hotbed
for the oil and gas industry’s exploration and production
activities. Nevertheless, exploitation of this frontier still
presents technical challenges because of the extreme water
and reservoir depths and complex salt tectonics.

Salt formations create natural traps for the accumulation
of oil and gas. Highly compacted salt formations have
nearly zero porosity, so they form natural barriers to fluid
flow and migration. As salt layers are buried and
compacted over time, their density remains low compared
to that of the surrounding sediments. This makes them
buoyant, which creates geological instabilities. During
geologic evolution of a sedimentary basin, salt pushes up
through surrounding sediments to form domes, pillows,
and diapirs, as shown in Fig. 1. Salt cannot sustain
deviatoric stresses, so salt continues to move until buoyancy
forces are balanced and internal vertical and horizontal
stresses are equal (isotropic) [12]. Oil and gas migrating

through surrounding formations becomes trapped against
the salt, forming reservoirs.

Drilling failures adjacent to salt diapirs [4], [33], [35] have
resulted from the inability to understand and predict the
geomechanical interaction between the isotropic stress state
of salt diapirs and the deviatoric stress states of the
surrounding formations. In the deepwater GoM setting,
each well abandoned without reaching target typically costs
tens of millions of dollars, so there is a strong motivation to
understand these interactions.

Sandia National Laboratories, in partnership with a
consortium of oil companies, has initiated a three-dimen-
sional nonlinear finite element geomechanical simulation
effort to understand the interactions between massive salt
sections and the surrounding exploration targets. This effort
is intended to reduce the occurrence of drilling failures,
which will have a direct impact on the feasibility of
extracting reserves from the deepwater GoM. The goal is
to analyze the in situ stress state existing in, and adjacent to,
salt bodies before drilling, as well as under producing
conditions. These simulations generate three-dimensional
fields of real-valued second-order stress tensors, whose
visualization is the focus of this paper.

The motivation for our novel visualization approach is to
present tensor information in a way that naturally leverages
the training, experience, and preexisting mental models of
our users. The current application is designed for the
material mechanics and geomechanics communities, both of
whom are familiar with the Mohr diagram. The Mohr
diagram, a paper-and-pencil graphical method for doing
coordinate transformations, is taught to undergraduates in
introductory courses. We have modernized the Mohr
diagram by making it interactive and extended it to
succinctly display contextual information. This results in a
new visualization capability that offers users a familiar, but
highly advanced, tool for data analysis and interpretation.
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Most scientific visualizations place tensor information
directly into the rendering of the finite element model.
Thus, a large number of pixels are needed to view data sets
of any size. In contrast, our technique communicates a
tremendous amount of information very compactly. Overall
contextual data, specific data for a displayed subset, and
detailed information about a specific selected element can
all be shown simultaneously in the Mohr diagram. Linking
this view to a finite element model view allows combined
exploration of variables in “FEM space” and tensor values.

The work presented in this paper is an extension of our
Visualization 2004 paper [7]. New contributions include a
total rewrite of our code into the Visualization Tookit (VTK)
[32], a new user interface written in Trolltech’s Qt [1], and
improvements that enable us to handle much larger models.
The original application comfortably handled about
10,000 elements, but the new application can handle over
a million elements on a single-processor computer. This is
critical for the analyst as it enables visualization of the
highly complex and extremely large models that are the
state of the art in geomechanical modeling [14].

2 TENSOR BASICS

We define a second-order tensor T to be a 3� 3 matrix of
values relative to a given “physical” basis:

T ¼
t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5: ð1Þ

Any tensor T can be decomposed as T ¼ SþA, where S is
symmetric (Sij ¼ Sji) andA is skew-symmetric (Aij ¼ �Aji).
S represents local force balance, whereas A balances
distributed torques (which are usually zero for the vast
majority of engineering applications, making stress typically
symmetric). There always exists an alternative basis—the
principal basis—in which the off-diagonals of S are zero and
the diagonal components equal the eigenvalues.

After diagonalization of S, the eigenvalues are �1, �2, and
�3, ordered so that �1 � �2 � �3; the corresponding ortho-
normalized eigenvectors are e1, e2, and e3. The eigenvectors
are the principal axes of the tensor and are respectively
known as the major, medium, and minor axes.

Eigenvalues and eigenvectors have profoundly useful
physical meanings that vary depending on the definition of
the source tensor S. If, for example, S represents a stress,

scaling the eigenvectors by the eigenvalues provides a
measure of the forces per unit area in orthonormal
directions. There are no shearing stresses on the principal
planes; planes of extremum shearing stress form equal
angles with two principal planes. If S represents the stretch
tensor from a multiplicative decomposition of material
deformation, an eigenvalue equals the ratio of deformed
length to initial length of the material fiber parallel to the
eigenvector. This paper aims at visualizing eigenvalues and
eigenvectors in an ensemble sense. We treat S as a stress
tensor, but the techniques apply equally well to any other
type of symmetric tensor.

We can determine the types of forces acting on a material
element by examining the signs of its tensor’s eigenvalues. If
the eigenvalues are all positive, then the forces are tensile,
meaning that the element is elongated in tension. If the
eigenvaluesare all negative, the element is being compressed.
If the eigenvalues are of mixed sign, then the element is
compressed in somedirections andpulled in others.Whenall
of the eigenvalues are equal, �1 ¼ �2 ¼ �3, the forces are said
to be isotropic and (if the material is also isotropic) the
element changes size without changing shape. When the
eigenvalues are unequal, the forces are anisotropic.

3 RELATED WORK

Most previous work in tensor visualization falls into one of
several categories: glyphs [9], [16], [21], [25], [28], [31], [34],
[37], feature-based [19], [27], [36], art-based [24], [26],
volume rendered [22], [23], [34], [40], and deformations
[3], [39], [40]. Volume rendered and deformation ap-
proaches bear little similarity to our work and are not
described further.

A number of glyphs have been developed for viewing
tensor data. The most common is the ellipsoid, which is
drawn using the tensor’s eigenvectors as the principal axes
and the eigenvalues to scale the ellipsoid along those axes
[25], [31]. Although color-coding to showeigenvalue sign has
been tried [38], ellipsoids are generally limited to symmetric,
real, positive tensorswhere all of the eigenvalues are positive.
Consequently, they are typically not used to visualize stress
fields. Ellipsoids are useful for visualizing diffusion and
stretch tensors, though they do have some drawbacks. For
data sets where the diffusion rates vary greatly, the smaller
ellipsoids virtually disappear [26]. Plus, it is difficult to
distinguish between a flattened ellipsoid and a sphere when
viewed face on. To overcome this problem, Westin et al. [37]
proposed a glyph that is the union of a sphere, a disk, and a
rod, the relative size of each encoding a different eigenvalue.
Kindlmann [21] goes further and creates a continuum of
glyphs that use superquadrics to combine the best features of
ellipsoids, cuboids, and cylinders.

The Haber glyph [16] is composed of a bar drawn along
the principal eigenvector impaling an elliptical disk
representing the other eigenvector directions, scaled by
the respective eigenvalues. The principal stress hedgehog
[20] simply draws the eigenvectors as orthonormal axes
scaled by their eigenvalues and colored by eigenvalue sign
(red in tension, green in compression). Livingston [28] uses
two glyph types, cylindrical tufts and axis tripods,
combined with animation and/or depth cueing to visualize
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Fig. 1. Salt moves upward to form diapirs, pillows, or vast sheets of salt

in response to the instabilities between the salt and the surrounding

sediments. Oil accumulates in traps formed below or around the salt

diapir.



rotation fields. The Reynolds glyph is peanut-shaped and,
because the distance from the origin of the glyph surface is
determined by the magnitude of the normal stress in that
direction, the glyph emphasizes the anisotropy of the tensor
[25]. VisCoRe [17] is a framework for visualizing material
constitutive relations in geotechnical engineering that uses
animated three-dimensional Reynolds glyphs. Glyph-based
techniques are best when used on two-dimensional data
sets. Glyphs quickly occlude one another in three-dimen-
sional fields for models of reasonable size or complexity.

Clutter is allievated through the use of probes which
interactivelymove theglyph through themodel andchange it
to reflect the local tensor characteristics. De Leeuw and van
Wijk’s [9], [31] probe for viewing the velocity gradient tensor
in flow fields is one well-known example. It uses a complex
icon consisting of an arrow and multiple flexible disks to
represent local quantities such as velocity, curvature, and
shear. Sigfridsson et al.’s [34] hybrid technique combines
texture-based volume rendering with a single ellipsoidal
glyph to provide continuous context with detailed tensor
information in a region of interest.

Delmarcelle and Hesselink’s [10], [25] hyperstreamline
glyphs are a type of regional probe. A path is advected
through the tensor field along one of the eigenvectors,
while, at each step, a tubular surface based on the
magnitude and orientation of the other two eigenvectors
is drawn. Rather than representing the value of a single
tensor, the trumpet-shaped glyph represents a continuum
of stresses along the trajectory. Hesselink et al. [19], [27]
generated topological skeletons within tensor fields by
locating singularities and connecting them with hyper-
streamlines integrated along the separatrices. However,
even this approach can become cluttered if there are too
many hyperstreamlines in the same image. Weinstein et al.
[36] developed tensorlines as an alternative feature-follow-
ing method that better handles propagation through
isotropic regions by including nearby orientation informa-
tion in the path calculation.

Laidlaw et al. [26] present an artistically-based approach
that encodes seven attributes of diffusion tensors as
different colored layers and types of simulated brush
strokes to visualize a two-dimensional slice of a mouse
spinal cord. Kirby et al. [24] apply this technique using
layered arrows, ellipses, and color to simultaneously
visualize multiple attributes in a two-dimensional simula-
tion of flow around a post. In both of these papers, the
various brush strokes, or the arrows and ellipses, can be
thought of as complex, layered glyphs that provide
different information when viewed at different distances.

Although Mohr diagrams are well-known within the
materials mechanics and geomechanics communities, they
are virtually unknown within the visualization community.
The only mention of Mohr diagrams in the visualization
literature was in VizCoRe [17], where Mohr’s circles are
used to represent stress state while doing stress element
analysis. However, it appears that their implementation of
Mohr’s circles is static and does not include interactive
features, such as brushing and linking. Advantages of using
Mohr diagrams are that they can be applied to tensors with
negative eigenvalues [5] and they provide insight into the

local tensor behavior by showing the shear (deviatoric),
compressive, and tensile forces.

4 MOHR DIAGRAMS

Otto Mohr developed Mohr diagrams, or Mohr’s circles,
around 1900 as a graphical method for performing
coordinate transformations for stress. Although they were
developed to analyze stress, they can be used with any
tensor matrix. The method applies to both symmetric and
nonsymmetric tensors in two dimensions. However, in
three-dimensions, Mohr diagrams are limited to describing
just symmetric tensors [5]. We solve this limitation by
combining Mohr diagrams with other information (see
Section 5).

As an example of how a Mohr’s circle captures forces per
unit area irrespective of the basis coordinate system, in
Fig. 2a, we look at a two-dimensional finite element where
normal stress, �, and shear stress, � , form orthonormal axes.
As we cut through the element with a line oriented by some
angle, �, the measure of normal and shear stress per unit
area smoothly changes with the orientation of the line.
Mohr proved that parametrically plotting values of � and �
for every value of � always draws a circle. The parametric
equations for plotting a 2� 2 tensor, with component
values tij, are given in (2) and (3) below. Their derivation
can be found in the appendix of [5].

� �ð Þ ¼ t11 þ t22
2

þ t11 � t22
2

cos 2�þ t12 þ t21
2

sin 2�; ð2Þ

� �ð Þ ¼ � t21 � t12
2

þ t12 þ t21
2

cos 2�þ t22 � t11
2

sin 2�

� �
:

ð3Þ

For different tensors, the size and position of the circle will
vary depending on the signs and values for � and � , as
shown by the solid and dashed circles (representing three
distinct tensor values) in Fig. 2b.

For three-dimensional symmetric tensors, the Mohr
diagram is a triad of circles. However, in keeping with
traditional nomenclature, we refer to the entire triad as a
Mohr’s circle since each triad represents a single tensor. The
Mohr diagram is generated by first performing an eigen-
value decomposition of the tensor. For stress tensors, the
eigenvectors are normal to planes that are subjected to only
normal stress (i.e., zero shear, or deviatoric, stress). If the
eigenvalues are not equal, then planes not aligned with the
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Fig. 2. (a) For a 2D finite element, normal and shear stresses per unit

area depend on the orientation of a cutting line. (b) Parametrically

plotting normal and shear stresses, � and � , as a function of the cutting

line’s orientation angle, �, plots a circle (see (2) and (3) below).



principal directions experience both normal and shearing
stresses. Consequently, there exists a state space of shear
stress, � , versus normal stress, �, characterizing achievable
solutions over the infinity of possible orientations of an
arbitrary plane cutting through the element. Otto Mohr
proved that the set of achievable pairs of � and � always fall
within the interior of a circle with diameter equal to the
difference between largest and smallest eigenvalues;
furthermore, attainable stress pairs will always fall outside
the circles formed by differences between the extreme and
middle eigenvalues. For symmetric tensors, these circles
always fall on the normal stress axis, �. Constructing them
is simply a matter of drawing three circles between the
eigenvalues. Of course, these circles must fall on the � axis
because principal planes suffer no shear.

In Fig. 3, there are four Mohr’s circles (each illustrating
different stress tensors) lettered A, B, C, and D. In each, the
outer circle is a measure of the degree of anisotropy of the
tensor; the larger the circle, the more anisotropic the tensor
is (i.e., the greater the peak attainable shear stress). The
intersection of the two smaller inner circles shows the value
for the medium eigenvector, �2. In A, �2 ¼ �1, so the larger
inner circle overlaps the outer circle and the smaller inner
circle goes to a point. Isotropic tensors (B) collapse to a
point, showing that there is no shear stress. Both A and B
represent degenerate cases used to identify features [27].

The position of the Mohr’s circle on the � axis relative to
the origin represents whether the tensor is in compression
or tension. Circles that are entirely to the left of the origin
are in compression (A and B); those to the right are in
tension (D). Circles enclosing the origin represent tensors
with a combination of both compressive and tensile forces
(C). The shaded regions in C and D show all the achievable
solutions for � and � within tensors C and D.

5 IMPLEMENTATION OVERVIEW

We have implemented a suite of tools for viewing finite
element simulation results, focusing on the domain of
nonlinear finite element geomechanical modeling. This
work builds upon our earlier visual debugging application
[6], [8] and Mohr’s circle implementation [7]. Taking
advantage of the cross-platform capabilities of VTK and
Qt, combined with using CMake [29] as the build system,
our new application is delivered on a variety of platforms.

Examples generated by the new application are shown in

Figs. 11, 12, 13, and 14.
The application consists of multiple coordinated views,

where the finite element model is displayed in one view

and the Mohr diagram is displayed in another linked view,

as shown in Fig. 4. We use brushing and linking as the

interaction mechanism connecting the two views. The data

set can be sliced (Fig. 11) or a variable can be thresholded

(Fig. 9) to reduce the number of elements being viewed. The

Mohr diagram window updates automatically to reflect

changes in the model window.
In the model view, context is provided by wire frame or

gray transparent renderings of the external faces of element

groups that have significance within the model. Elements

are color-coded based on the values of a user-selected
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Fig. 3. Four different Mohr’s circles representing four different stress
tensors with varying degrees of anisotropy, shear, and combinations of
compressive and tensile forces. Each tensor’s circle triad intersects the
� axis at its eigenvalues. A tensor’s maximum shear is seen through the
height of its triad’s outer circle along the � axis.

Fig. 4. The upper image shows a colored planar subset of finite elements
combined with an outline mesh of the material boundaries for context.
The view is from inside of the finite element volume looking towards the
boundary between the spherical salt diapir and the surrounding
sediments. The elements are color-coded according to the values of
the displayed variable (von Mises stress). The lower image shows the
Mohr’s circles for the subset, color-coded to correspond to the model
view. The black Mohr’s circle overlaying the colored circles is an
interactive probe that updates as the mouse moves over the elements in
the upper window. The active element is outlined in white. The Mohr’s
circle for this element depicts a state of triaxial compression with three
disparate eigenvalues. In the colored envelope, the larger cyan circle
protruding from the linear ramp of surrounding circles (to the right of the
black Mohr’s circle) shows a perturbation in the shear stress of the
elements immediately next to the salt.



element variable. That variable’s range of values is mapped
onto a rainbow scale, where red represents high values and
blue represents low values. The user can optionally display
a legend in the model window correlating the values with
the color range (Figs. 11, 13, and 14).

To provide context in the Mohr diagram window, the
Mohr’s circle for a particular element can be superimposed
over color-coded layers, providing both global and subset
information, as shown in Fig. 4 and the closeup in Fig. 5.
This assists the analyst in developing a global under-
standing of the data, as well as locating those elements with
the largest degree of anisotropy or isotropy or the greatest
compressive or tensile forces.

For nonsymmetric tensors, we visualize the symmetric
part using Mohr’s circles and the nonsymmetric part (from
either an additive or multiplicative decomposition) using a
separate hedgehog field, rendered in the model window,
showing the direction of the principle axis of the rotational
vector associated with the nonsymmetric part, colored by its
magnitude.

5.1 Contextual Information and Probing

We expand upon the traditional Mohr diagram by includ-
ing global and subset information for model elements
through a series of layers that can be drawn in the Mohr
diagram window. These can be viewed separately or in
combination.

First, the analyst can view global information drawn
from the entire model. The combined footprints of the
Mohr’s circles for every element in the model produce a
filled envelope that shows the global degree of anisotropy at
each position along the horizontal axis. As shown in Fig. 4
and Fig. 5, this global envelope is drawn in gray as a
background image in the Mohr diagram window.

Additionally, the analyst can overlay the global envelope
with color-codedMohr’s circles for a subset of elements using
the same color-coding as is used to render the subset of
elements in themodel window. An example of this overlay is
shown in Fig. 4, where the colored Mohr’s circles of the
elements in the planar subset are drawn over the gray
envelope for the entire model. Part of the underlying global
envelope is still visible behind the cyan section, indicating
that there are elements with greater anisotropy for approxi-
mately the same level of mean stress elsewhere in the model.
The circles are drawn in order of size, from large to small so
that the smaller, darker blue circles corresponding to the

upper rows of the subset plane remain visible. Fig. 5 shows a
zoomed-in view of this detail.

A third overlay is generated when we probe elements in
the model window for stress information by using the
Mohr’s circle as a dynamic glyph that interactively changes
as the mouse brushes over different elements in the model
window. The glyph is a Mohr’s circle consisting of a triad of
black circles drawn over the color-coded subset envelope,
as shown in the lower image in Fig. 4 and the closeup of the
same image in Fig. 5.

Upon reading in a new data set, the application
calculates the eigenvalues and eigenvectors for each tensor.
The center point for each Mohr’s circle is calculated as
needed and the circles are sorted, first according to their
size, then according to their position along the compres-
sion/tension (horizontal) axis. The circle extrema, circles
with the largest and smallest sizes and the leftmost and
rightmost coordinates along the horizontal axis, are found.
These circles are the elements whose tensors represent the
extremes in the anisotropic and/or isotropic distribution of
forces and the extremes in compressive and/or tensile
forces, respectively. An example of the four Mohr’s circle
extrema and their associated elements is given in Fig. 6. The
Mohr’s circles for the two red elements are so close to each
other that they overlap. They can be seen as the largest,
leftmost circle at the bottom of Fig. 6.
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Fig. 5. Zoomed-in image of Mohr’s circle detail in Fig. 4. The interactive
Mohr’s circle glyph is superimposed on both the colored subset
envelope and the gray envelope showing the anisotropy for the entire
model. All of the Mohr’s circles are to the left of the origin, so they all
indicate a compressive stress state. The rightmost blue circle results
from the discrete nature of finite element meshes.

Fig. 6. The four Mohr’s circle extrema and their associated elements
within the model window are shown. Note that the red elements produce
overlapping circles in the Mohr diagram window. Also, for clarity, several
of the material blocks in the database are not shown in this visualization
(namely, those surrounding the salt diapir). The rightmost Mohr’s circle
corresponds to an element in the layer immediately overlying the salt
diapir and shows that the stress state of the sediment layer has three
unequal eigenvalues. In contrast, the middle Mohr’s circle corresponds
to an element within the salt diapir and indicates an isotropic state of
stress in the salt. The leftmost Mohr’s circles correspond to elements far
removed from the salt diapir and reveal a biaxial compressive stress
state with two equal eigenvalues, i.e., the far-field stress state. This
facilitates validation of the finite element analysis.



Clicking on an element within the model window selects
it. A new variable can then be created to represent the
distance between the eigenvalues of the selected element
and the eigenvalues of the other elements in the model. We
compute the distances by treating each element’s eigenva-
lue triplet as a point in three-space, then calculating the
Euclidean distance from each point to the selected cell’s
point. Recoloring the elements by this derived variable, as
in Fig. 7, shows at a glance those elements that are most
similar to the selected element (in red) and those that are
most different (in blue).

5.2 Filtering

Selecting circles or specifying Mohr’s circle parameters
within the Mohr diagram window provides a filtering
mechanism that links back to the model display window.
For instance, all of the elements whose degree of compres-
sion is within some tolerance of a selected circle can be
chosen or all the elements whose outer Mohr’s circle radius
(and degree of anisotropy) is equal to some value can be
displayed. Alternatively, an element can be selected from
within the model window and all elements whose Mohr’s
circle parameters are within some percentage of its
parameters can be selected, as is shown in Fig. 8.

Filtering operations can be used to create new sets and to
describe new element groups. These sets can be turned on
and off interactively or combined with built-in sets from the
simulation (things like elements grouped by material type
or processor identifier). These new filtering operations are
performed in combination with the filtering functions we

developed previously for scalar and vector variables. This

provides a rich mechanism for querying the data set for

elements that meet various criteria.
The filtering capability can be used, for example, to show

only those elements in a calculation that are deforming

elastically. Conversely, filtering can be used to display only

elements that have yielded plastically or even to locate

inadmissibly behaving elements, such as finite elements on

the verge of inverting.
Filtering elements in the model based on Mohr’s circle

parameters vastly reduces clutter in a three-dimensional

environment. Feature detection can be performed by

filtering on either the isotropic extreme given by the Mohr’s

circle with the smallest radius or on circles that have two

eigenvalues equal to one another [27]. This will locate the

elements in the model containing degenerate points.

5.3 Rotation Information

For three-dimensional tensor values, principal orientations

cannot be readily encoded into Mohr diagrams. Instead, we

present this information in the model window. To visualize

principal orientations in the application, the analyst can

select from the two options, each of which was developed to

support a different user community.
For themechanics community,weprovide a simple plot of

the field of principal stress directions. Even though such a

plot shows only two principal directions at a time, the

orientation of the third eigenvector is implied by the relative

orientations of the two directions that are seen. We draw the

eigenvectors as a cross to reduce the visual clutter and make

the image more intelligible. The user can understand the

orientation by interactively changing the view.
The second option for visualizing principal directions in

three dimensions considers the matrix of direction cosines

to be a rotation matrix and applies the Euler-Rodrigues

theorem [15] to plot the axis of rotation colored by the angle

of rotation. This option has considerable appeal to the

geomechanics community because the direction cosine

matrix can be made unique by using eigenvectors that are

orthonormalized projections of the laboratory base vectors

onto the eigenspaces (allowing visualization of the unique
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Fig. 7. Elements are color-coded by similarity to the selected element,

which is highlighted in white. Red elements are most similar, while blue

elements are least similar.

Fig. 8. (a) The selected element is outlined in white in the model window.

(b) The model window has been updated to display the same element

along with all of the elements whose Mohr’s circles fall within 0.2 percent

of its Mohr’s circle parameters.



smallest rotation angle needed to transform the laboratory
basis into the principal basis).

6 APPLICATION AND RESULTS

The goal of our numerical analyses is to identify drilling
trajectories that minimize risk, while also providing ready
access to the desired exploration target or, in the case of a
sanctioned development, compatability with the field
development plan.

GoM near-salt and subsalt reservoir settings include a
variety of geometric configurations, including spherical
diapirs, columnar diapirs, columnar diapirs with tongues,
and thick, flat-lying sheets [13]. We limit our discussion
here to static spherical (Fig. 4) and columnar diapir models
(Fig. 6). The spherical model contains 8,136 elements, while
the columnar model contains 10,128 elements. Additionally,
we describe application to a model containing over a
million elements developed for a specific field setting.

For each data set, we are interested in examining tensor
information for elements in and near the salt formation and
contrasting their behavior with elements in regions that are
removed from the influence of the salt diapir, known as the
far-field. Stresses in the far-field reflect a passive sedimen-
tary basin setting in which gravitational loading results in a
stress state where the vertical stress, SV , is due to the weight
of the overburden and the horizontal stress, SH , is equal to
some fraction of SV [30]. However, this stress state cannot
be sustained within salt formations, where the stresses relax
to reach an isotropic state with SH ¼ SV . This stress state is
at odds with the surrounding sands and shales, which can
support a deviatoric state of stress with SH 6¼ SV . Because
the salt diapir is in equilibrium and maintains continuity
with the surrounding formations, the stress state near the
interface is complex and perturbed from the far-field state.
The only way to determine the local stresses is to solve the
complete set of equilibrium, compatibility, and constitutive
equations with the appropriate initial and boundary
conditions; in the current work, this is accomplished via
numerical finite-element simulation.

Several aspects of the near-salt stress field are significant
in the context of reducing drilling risks. First, we seek to
identify locations where shear stresses are locally elevated
because this impacts wellbore stability. Second, it is
important to identify regions where horizontal stresses are
locally reduced because this likewise affects wellbore
stability by impacting fracture gradient, which is the stress
at which the formations surrounding the wellbore will
fracture. Third, regions where the vertical stresses are
perturbed from the far-field must be identified to support
calculations of the drilling pressures required for wellbore
stability. Finally, identification of optimal drilling paths is
also impacted by regions where the principal stress
directions (eigenvectors) have rotated relative to the vertical
and horizontal directions that characterize the far-field.

We illustrate the fourth interest above first because, as
discussed in the previous section, visualization of stress
rotations is typically difficult for the geomechanics and
mechanics user communities. Stress rotation is illustrated
with the spherical geometry in Fig. 9, wherewe showa group
of elements where the principal stresses have rotated from

vertical and horizontal, which affectswellbore stabilitywhile
drilling [13]. Filtering the model window to display just a
single plane of elements,we superimpose theirMohr’s circles
on the envelope (shown in gray) for the entire model. As we
interactively probe the cells, the black Mohr’s circle overlays
the colored circles for the subset. The current element is
drawn in white in the model view and its particular Mohr’s
circle overlays the colored circles for the subset.

This latter aspect is illustrated for the columnar diapir
with tongue model database in Fig. 10. In this example, we
have filtered on those elements that display a high degree of
rotation and then colored-coded a subset of these elements,
based on the degree of rotation and scaled by their
magnitude within the selected range.

For the same database, we visualize the local reductions
in the maximum principal stress that can occur adjacent to
salt diapirs (note that, because compressive stresses are
defined as negative, this is the eigenvalue that is smallest in
magnitude). Fig. 11 shows the changing values of the
maximum principal stress, which is proportional to the
fracture gradient. One can readily evaluate the length scale
of the stress perturbations and locate “hot spots” with
respect to the location of the columnar salt diapir and
overlying salt tongue.

In Fig. 12, we illustrate another useful application of the
filtering capability where we identify elements outside of
the spherical salt diapir in which the von Mises stress is
elevated above a threshold value of 45 MPa. Because it is an
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Fig. 9. Filtering on the amount of rotation, we have isolated this planar
slice through a clump of elements in the vicinity of a spherical salt diapir.
The Mohr’s circles for the subset are then overlaid on the envelope from
the entire model. The Mohr’s circle for the element shown in white is
displayed in black and reveals a triaxial compressive stress state with
three unequal eigenvalues indicating the near-salt stress perturbation.
(As discussed in Fig. 6, the stress state in the far-field is characterized
by two equal eigenvalues.)



invariant, the von Mises stress, equal to the square root of

one-half of the sums of the squares of the principle stress

differences, is a convenient measure of the shear (devia-

toric) stress, which, as noted above, affects wellbore

stability. For the application of interest, this visualization
is particularly useful because the analyst can immediately
see whether the von Mises stress is elevated due to a
difference between only two principal stress values or
whether it is elevated because all three three principal
stresses are unequal—the two scenarios have potentially
different implications for wellbore stability. In the particular
example shown, the visualization also illustrates small
inaccuracies in the numerical analysis that result from the
mesh resolution and the approximation of a spherical shape
using hexahedral elements. Depending upon the require-
ments of the analysis, this may encourage the analyst to
remesh this region to gain higher accuracy.

The final example we consider is a large, multimillion-
element model that was constructed to represent a real field
setting. In Fig. 13 and Fig. 14, in which the large salt diapir
is not shown, we present two different visualizations of the
von Mises stress in the formations immediately next to the
salt diapir and tongue that abut hydrocarbon-rich forma-
tions. The visualization in Fig. 13 shows shear stress in the
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Fig. 11. Planar horizontal cut through the columnar diapir model showing
the value of the eigenvector �1 equal to the minimum principal stress
(recall that compression is defined as negative). The widget for
manipulating the cutting plane is visible in the center of the model view.
Because the cutting plane is at a shallow depth in the model, the colored
Mohr’s circles are all indicative of low mean stresses. The minimum
principal stress is elevated above the far-field values immediately below
the salt tongue, as can be seen by the hotter colors. The overlay of the
colored Mohr’s circles against the gray envelope from the rest of the
model provides a background context for how shear stress on this plane
compares to the rest of the model.

Fig. 10. Salt pillar model elements filtered for highest stress rotation.

Fig. 12. Filtering on the von Mises stress value, we have isolated this
shell of elements at the interface with the spherical salt diapir. In the
Mohr diagram, the Mohr’s circle for the selected element (highlighted in
black) overlays a colored envelope for the selected elements, which, in
turn, overlays the gray envelope for the entire model. For the element
shown, the intermediate eigenvalue, �2, is almost midway between the
minimum and maximum eigenvalues, indicating a stress state highly
perturbed from the far-field (where two eigenvalues are equal).



material face immediately next to the salt diapir, whereas
the visualization in Fig. 14 shows shear stress along a
vertically oriented plane that transects the formation next to
the salt diapir. Such information can suggest salt exit points
that minimize shear stress on the wellbore.

7 CONCLUSIONS

The tensor visualization methods developed in this work
are directly motivated by the data analysis needs of the
mechanics community. Deterministic finite-element analy-
sis tools and, particularly, those used in defense-related
applications, have reached a highly developed state of
maturity. The code used here, JAS3D [2], utilizes explicit
quasistatic solvers developed specifically under US Depart-
ment of Energy (DOE) Defense Programs to handle very
large deformation problems with complex material consti-
tutive models and contact surfaces. The code is based on
massively parallel, distributed memory multiprocessor
computers, enabling analysis of models containing tens of
millions of finite elements. JAS3D is ideally suited for
geomechanics problems because it supports highly non-
linear material behavior, large-deformations, and a high
degree of geometric complexity [14]. With the significant
advancement in computational capabilities experienced
over the past decade and advances in constitutive modeling
of geomaterials [11], it is now practical to perform analyses
of complex field settings that may require tens of millions of
finite elements to accurately represent the complex geologic
structure and achieve adequate resolution in specific
regions of interest.

The ability to perform such sophisticated numerical
analyses does not come without cost. First, as model
complexity increases, it becomes increasingly difficult for

the analyst to verify the integrity of the numerical analysis
and that it is free from artifacts introduced, for example, by
inadequate mesh resolution or by approximations of the far-
field boundary conditions. Second, after model assurance is
achieved, the analyst is still faced with interpreting a vast
array of second-order tensor data that exhibits considerable
complexity in space and, for some analyses, in time. The
increased sophistication of numerical analysis codes and
high-performance computing capabilities have generally
outstripped the suite of postprocessing tools available to the
analyst for interpretation. The work described here ad-
dresses both needs by providing a suite of visualization
tools on par with the sophisticated numerical analyses
codes and supercomputers that are currently available.

Because physicists and engineers haveusedMohr’s circles
for the last 100 years, an interactive visualization tool based
on Mohr diagrams is immediately useful with virtually no
learning curve for the material mechanics and geomechanics
analyst. This paper demonstrates the usefulness of Mohr
diagrams to the visualization community by illustrating their
use in a geomechanics application. The interactive Mohr
circle glyph, when viewed in concert with other stress data
(for example, vonMises stress), provides an environment for
data analysis that is both vastly simplified and highly
intuitive. It communicates a large amount of information in
a relatively small area of the screen.

Further development of Mohr diagram visualization is
already underway for other advanced applications aimed at
debugging finite element codes (for example, by locating
nearly inverted elements or identifying regions in which
solutions may be affected by mesh resolution or element
aspect ratio) and visualizing differences between solution

516 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2005

Fig. 13. Visualization of the invariant shear stress in the material block
lying immediately to the right, and above, an irregularly shaped salt
diapir (note that the salt material block is not shown). The Mohr’s circles
shown in red indicate the elevated shear stresses adjacent to the salt
diapir.

Fig. 14. This is an alternative visualization of the data shown in Fig. 13.
This shows the von Mises stress in a vertically oriented plane of
elements that are lying in the formation next to the salt diapir. The salt
material block that represents the diapir is not shown. The gray envelope
represents the element stress values excluded from the planar cut that
is shown. Cutting through the complicated geometry allows closer
inspection of the stress perturbations as we interactively slide the cutting
plane back and forth.



methods in these codes. For the latter goal, we are currently

addressing the comparison of solutions generated by

Eulerian versus Lagrangian implementations in order to

quantify the errors introduced by each of these approaches.
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